
Identifying Subdomains of Multiple-Domain Frameworks

Victor Hugo Santiago C. Pinto1, Daniel G. San Martín Santibáñez1 and Valter V. de Camargo1

1 Advanced Research Group on Software Engineering (AdvanSE) – Computing Department,
Federal University of São Carlos (UFSCar), Washington Luís highway, km 235 –

13.565-905, São Carlos - SP, Brazil
{victor.santiago, daniel.santibanez, valter}@dc.ufscar.br

Abstract. Multiple-Domain Frameworks (MDF) are frameworks that provide
variabilities to address several domains/subdomains. MDFs present difficulties
such as (i) the presence of useless variabilities in the final releases and (ii) ar-
chitectural inflexibility. The former affects the productivity of application engi-
neers as they need to live together with variabilities which are useless to their
domain. The latter prevents framework engineers from composing different
framework configurations to attend more constrained domains. One alternative
for solving this problem is to convert them into Framework Product Lines
(FPL). FPL is a Software Product Line which members are frameworks, rather
than complete applications, allowing that their members being created just with
the variabilities required for a specific domain. Although this conversion pro-
cess seems straightforward, the most challenging activity is the identification of
the MDF subdomains and their mapping to the source code. This must be done
because these subdomains will turn into the main features of the resulting FPL.
In this paper we present an approach to assist this activity, which is schemati-
cally represented as an algorithm. The approach was evaluated by means of its
application in an MDF called GRENJ. It was restructured into an FPL and a
comparative study was conducted between the two versions. The results were
promising regarding the number of useless variabilities and also in terms of the
composability of the resulting architecture.

Keywords: Framework, framework product lines, reusability.

1 Introduction

Frameworks are reusable tools that support application development through a process known
as instantiation, which consists basically in choosing variabilities to address application re-
quirements [11][15]. They have been extensively used for decades to support application de-
velopment; some of them support the development of complete applications, such as GRENJ
[9] and the ERP (Enterprise Resource Planning) developed by SAP, while others assist in the
development of specific parts of applications such as Hibernate [14], Spring, JSF, etc.

Regardless the way a framework is instantiated (black, white or grey box), all of its variabili-
ties/modules are usually carried along with the application code in the final release. For in-
stance, if an application is developed using the Hibernate, the final release includes the object
code of both the application and the whole framework, regardless of the amount of variabilities
that is used. That is to say, the whole framework is kept along with the application, even if few

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 27

variabilities are actually used. However, here resides an important point; since there exist the
possibility of using the other non-used variabilities when the application evolves; this is not a
problem, because this is a framework characteristic.

Multiple-Domain Frameworks (MDFs) is a term we have used to characterize frameworks
whose boundaries go beyond just one domain, that is, they provide variabilities from several
domains. In general, conventional frameworks become MDFs when they are submitted to a
non-controlled and unmanaged evolution process. Since an MDF covers more than one domain,
when applications are created with its support, the final release involves variabilities that will
never be used by these applications. So, one inherent problem of MDFs is the presence of use-
less variabilities in specific sets of applications, that is, variabilities that are not likely to be
used in the future. As a result, MDFs present problems for Application Engineers and Frame-
work Engineers. Application Engineers need to live together with a vast set of variabilities and
parts of them are useless to some specific domains, impacting negatively into the productivity.
Framework Engineers do not manage to build smaller framework versions thanks to the archi-
tectural inflexibility of MDFs.

Framework Product Line (FPLs) is a term we have presented in a previous work [17] to repre-
sent a product line whose members are frameworks instead of complete applications. Members
can be built involving just the variabilities of one domain, avoiding unnecessary features in
final release of the applications developed with these members (frameworks). An important
characteristic of FPLs is their flexible architecture, allowing building frameworks containing
just the variabilities required for very specific domains. Therefore, FPLs fit perfectly to solve
the aforementioned problems.

However, although FPLs present the ideal solution for the MDF problems, turn them into FPLs
is far from trivial. The first and most challenging activity in this conversion process is the iden-
tification of all the subdomains covered by the MDF and their consequent mapping to the
source code. This is an imperative task in order to build a suitable feature model and proceed to
a successful restructuration. Hence, to the best of our knowledge, there is no in the literature
clear guidelines to perform this activity. Most of the framework restructuration processes aim at
remodularizing frameworks using other criteria, such as: crosscutting concerns, layers, lower
level functionalities, etc. But, none is focused in break them down into subdomains and consid-
er these subdomains as building blocks (features) of a product line.

In this paper, we present general guidelines, represented as an algorithm, to assist domain engi-
neer in the first activity for turning an MDF into an FPL – we call this activity: Subdomains
Identification. In order to illustrate the application of our algorithm, we apply it in the frame-
work GRENJ. Additionally, we conducted the modularization of GRENJ and, as a conse-
quence, we achieved an FPL called GRENJ-FPL. For evaluating our proposal, under the appli-
cation engineers’ perspective, we conducted a comparative study using two versions of the
GRENJ-FPL (coarse-grained and fine-grained features) and the original version of GRENJ.
Three applications were then instantiated using each of these reuse infrastructure and compari-
sons were conducted using source-code quantitative metrics. The aim was to compare the
amount of useless variabilities/features in the final releases and the simplification of the source-
code. Bearing that in mind, the improvements in terms of reuse, maintenance and composition
using FPLs become clear.

In Section 2, the FPL concept is revisited and explained. In Section 3, we present the activities
that may contribute to identifying subdomains of supposed MDF. In Section 4, we present the
case study, the identification of the possible subdomains covered by framework GRENJ. In
Section 5, we show the result of the modularization of GRENJ toward GRENJ-FPL and we
present a comparative study among some members from GRENJ-FPL with the previous MDF
in terms of reuse through the use of quantitative metrics. In Section 6, we present the related
work. In Section 7 contains the conclusions and future perspectives are proposed.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 28

a) Framework Product Lines

b) Derived Frameworks

Core

S1 S2 S3

Core

S2

Core

S1

Core

S3

framework 1 framework 2 framework 3

Core

S1 S2 S3

A B C

D E

F G H I J

L M

C1

C1.1 C1.2 C2.1

Core

S1

A C

C1

C1.2

C2

C2.1 C1.1

Core

S2

F G H

C1

C1.1 C1.2

C2

C2.2C2.1

......

framework 4 framework 5

modules
App2

modules
App3

modules
App4

modules
App5

modules
App6

App2 App3 App4 App5 App6

modules
App1

modules
App2

modules
App5

App1 App2 App5

framework 4 framework 4 framework 6
framework 1 framework 2 framework 2 framework 3 framework 3

modules
App3

App3

modules
App4

App4

framework 5 framework 5

c) Applications

optional or

C2

C2.2

Core

S3

J

C1 C2

framework 6

modules
App1

App1

framework 1
modules

App6

App6

framework 6

2 Framework Product Lines

Framework Product Line (FPL) is a Software Product Line (SPL) [7] whose members are
frameworks, rather than concrete software applications. The composition of features on an FPL
results in frameworks that still need to be instantiated or coupled to concrete applications to
work properly [6][17]. Figure 1 illustrates the main idea of an FPL organized in three parts: a, b
and c. In the part (a) there are two FPLs with different feature granularity. In the part (b) there
are some frameworks that can be generated from these FPLs. In the part (c), one can see the
applications that can be generated from the frameworks.

On the left (a), there is an FPL with coarse-grained features. The common part is called Core
and the others are subdomains S1, S2 and S3. The reason for creating this FPL is to allow the
reuse of Core, since there are common variabilities that may be used in both subdomains; if it
were not the case, the ideal case would be three entirely independent frameworks. Note that the
relationship “xor” among subdomains indicates they are separated, in other words, there is not a
combination that admits more than one subdomain. On the right (b) there is the same FPL, but
with fine-grained features. The difference between the first and second FPL is that in the last,
some variabilities in Core and in the subdomains are optional. Features C1 and C2 and their sub
features were included in Core, now there is the possibility of choosing which features are
really important for the framework, and consequently for an application. Regarding to the con-
straint among features S1, S2 and S3 is still valid. One should notice that this kind of constraint
is applicable for most of FPLs. However, there may be some different cases: applications that
will use a few variabilities of one restricted subdomain and others that will use variabilities of
more subdomains, but not from all them. For treating these different cases, it is possible to
create constraints among features. For instance, in the case of “S1 can be composed with S2,
but not with S3”, if the relationship among features is “or”, it does not address the case, because
S1 and S3 can be together. If the relationship among features is “xor”, S1 never will be together
with S2, then “S1 excludes S3” constraint could be applied, keeping the relationship “or”. This
case illustrates the constraint among subdomains, but there may be constraints of a subdomain
with part of other subdomains.

On the left side (part b), there are three framework members that were derived from the first
FPL. Note that there are just three valid combinations: Core + S1, Core + S2 and Core + S3. On
the right side (part b), there are other three framework members derived from the second FPL.
Frameworks from the right side are more restricted than those from the left side. Note that this
is a refined level of feature selection [2][3][8]. The aim is to create frameworks containing only
features that address the requirements of an application [4] instead of using the complex struc-
ture with all available variabilities covering several subdomains.

Fig. 1. Framework Product Line

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 29

Notice that in the second FPL there are other possible feature combinations which are not in the
chart. The frameworks 1, 2 and 3 seem small, but each one has all variabilities of their subdo-
mains. The frameworks 4 and 6 are more restricted than frameworks 1 and 3, since they do not
have all variabilities from subdomains S1 and S3 and all common features from Core. The
“framework 5” is equal to “framework 2” in terms of available variabilities: both have Core, C1
and C2 with all their sub features and S2 with features F, G and H.

In part (c), it is possible to notice six applications developed with the support of derived
frameworks. Note that on the left side (part c), the applications were developed with support of
framework 1, 2 and 3, while on the right side (part c), the same applications were developed
with support of framework 4, 5 and 6. This possibility indicates that the applications may be
developed with one restrict part of subdomains. Moreover, for developing App1, features C1.1,
C2.2, B, D and E were not necessary, even so, the framework used in that application could
have S1+Core in their full form, as illustrated on the left side (part c). In that case, the frame-
work of the final release App1 will have features not used, but since App1 may evolve over
time, the remaining features might be used, as long as these features are from the same subdo-
main/domain of application. To clarify, if framework 4 were used to develop App1, it would be
possible that the evolution of this application would require features from FPL and to add to
this framework.

Based on the overview previously discussed, FPLs may be developed to address two different
usage scenarios. Usage Scenario 1 whose FPL has coarse-grained features in subdomains level
– this FPL enables generation of few, but large frameworks from small set of features. Usage
Scenario 2 whose FPL has fine-grained features – this FPL allows both the creation of large
and small frameworks.

The main point in both usage scenarios is that the FPL should be modularized in a way to not
allow the generation of frameworks with features that will never be used for certain sets of
applications (domain). We believe that the most common situation is the existence of FPLs
with a few features for the generation of large frameworks, as indicated in Usage Scenario 1.
However, if necessary, someone can build FPLs with a larger number of more fine-grained
features for the provision of various frameworks with slightly different characteristics, as indi-
cated in Usage Scenario 2.

One important point to be highlighted is that in Usage Scenario 2, when applications evolve,
they may ask for features that do not exist in the restricted version of the framework. Thus, in
this scenario it is important to have an “on-demand feature selection and composition” strategy.
Therefore, there must be a mechanism for searching new features in the FPL, check them out
and compose them to the framework. This is important but it is out of the scope of this paper.

The main motivation for Usage Scenario 1 is to identify if a framework comprehends more than
one subdomain, that is, when using it to develop applications that are specific to the framework
subdomain. A set of features may not be used during instantiation; nonetheless, since they
belong to the same subdomain of the developed application, they are likely to be used in the
future. As the granularity of the FPL features is coarse, one may create wider frameworks. This
means that applications can evolve without having to seek features that are not in the frame-
work. The number of features that are carried along with the application is much higher,
though; it is a trade-off.

3 Identifying subdomains of MDFs

Identifying subdomains covered by frameworks is not always an easy task. Also, different
software designers could get to different subdomains. A way to diminish this difference is
through an analysis of all available information about the framework, such as documentation,

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 30

is a set of available variabilities from framework F; F
 is a set of relationships between F and A; M
is a set of identified subdomains;Output: S

Begin
 for do all applications (a[0]...a[n]) of the set A
 - Searching for the variabilities (v[0] v[n] used in each application;...)
 - Creating a subset (L[0] L[n]) from F with the variabilities found;...

 on subsets (L[0]...L[n]) the frequency which certain variabilities (v[0]...v[n]) search
 are being used simultaneously in the applications (a[0]...a[n])

 If it is possible to group the variabilities (v[0]...v[n]) into subsets (S[0]...S[n])
 such that most of the variabilities belong to only one of these subsets then
 - The framework has characteristics of an MDF;
 - From the subsets (S[0]...S[n]) the subdomains can be abstracted;
 else
 - The framework is not an MDF;

 Concluded Analysis;
end

usage history and applications developed with framework support and previous knowledge. If
the analysis of subdomains is performed only taking into account the documentation, there may
be a risk of not achieving the proper subdomains. In this paper, we present a strategy to identify
the subdomains, it consists in domain analysis including existing applications. In order to clari-
fy the subdomains identification from existing applications, we suggest an algorithm to assist
the understanding of this part. Figure 2 presents the algorithm and Figure 3 schematically
shows how this identification process happens.

It is important to note that this strategy is a manual process and it may be considered as a pre-
liminary indicative for subdomain identification, that is, it does not consist in a definitive alter-
native, because it cannot assure that applications will not evolve and use the remaining variabil-
ities of other subdomains. As a result, the final decision must be based on domain knowledge of
framework. In this analysis we suggest to admit stable applications, i.e., applications that have
already evolved over time, because if the applications are very recent, we cannot be sure that
their variabilities may be used in a restrictive way by certain subsets of these applications.

In the part (I) of Figure 3 there are two sets, referred to as “F” and “A”. The set “F” contains all
9 variabilities of a supposed MDF and the set “A” represents a repository containing 17 appli-
cations developed with support of this framework. The variabilities are represented by “puzzle
pieces” with prefix “v” followed by a numerical value, while applications are represented by
squares with prefix “a” also followed by a numerical value. Let us suppose that there is a map-
ping “M” that allows one to identify which variabilities from “F” are used in each application
of “A”. These three sets are presented as input for the algorithm depicted in Figure 2.

In Figure 2, the first step is to select each application a[n] from “A” and to search the used
variabilities v[0]…v[n] on set “F” in each application. The found variabilities will form the
subsets L[0]…L[n]. Then, for each application a[n], should create a subset L[n] containing all
variabilities used by a[n]. The part (II) of Figure 3 shows some sets L[n] formed in this step.
For instance, for application a1, the L[1] has the variabilities v1, v4, v6 and v9, because a1 was
developed using them.

In the second step, the frequency on which the variabilities on subsets L[0]…L[n] are used
simultaneously in the applications should be analyzed. In the third step, from this analysis and
domain knowledge, the variabilities should be grouped in subsets S[0]…S[n]. For that to be
done, it is also necessary to investigate if the variabilities contained in each subset are sufficient
not only to support the development, but also to the evolution of these applications.

Fig. 2. Algorithm to identify subdomains from applications developed with support of an MDF

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 31

F
A

a1
v1

v4

v9

v6 v2

v5

v7

a8 a17

v3

v8
v4

v4
a4

a3

a9

a7

a16

a15

L1
L2

S1 S2

S3a2

a5

a6

a10

a11

a12

a13

a14

v3

v4

v7

v5

v8

v6

v9

v2

a11

a8 a17
a13

a9

a16

a12

a14

a2

a10

a1

a15

a5

a6

a7

a4

a3

v1

v4

v9
v6

v1

v4

v1

v4

v9

L3

...
L17

v3

v8

v4

Fig. 3. Steps for subdomain identification using proposed strategy

If the grouping is possible, one may conclude the considered framework has characteristics of
an MDF and from the subsets S[0]…S[n], the subdomains may be identified. Otherwise, it is
not an MDF, thus all its variabilities may be used for all applications. In the part (III) of Figure
3 there are three subsets: S1, S2 and S3. The application a4 only uses variabilities v4 and v6; in
the future a4 may be evolved and also use variabilities v1 and v9, but rarely a4 will use varia-
bilities from subsets S2 and S3. One ought to realize that there may be applications covering
more than one of these subsets. However, the main idea is to separate the variabilities in sub-
sets, based on the analysis of applications that use (or will use) only variabilities concentrated
in these subsets. Notice that there may be common variabilities in the formed subsets, as the
variability v4 that is used for all applications.

If we were to devise a feature model [19] to represent a possible FPL from the analysis of the
framework “F”, it could contain only four features: Core, S1, S2 and S3. In this way, the varia-
bility v4 would be associated with the feature Core and the other variabilities with features that
represent the subdomains. Based on available applications, the features S1, S2 and S3 could be
organized, in the feature model, through the relationship of mutual exclusion, because there are
not applications which use variabilities from more than one subdomain (other than the variabil-
ity v4).

3.1 Mapping between subdomains and source code

In order to consolidate the subdomains identification we suggest that, in addition to the feature
model to represent them, be created an artifact to map them to the source code. This artifact
may assist the modularization process of the pieces of code for features that will form the re-
sultant FPL. For this, the mapping must provide enough information in which from a certain
subdomain we can know what are its variabilities and corresponding units that collaborate with
its implementation. Besides that, some kind of description for pieces of code may be added to
the mapping to indicate attributes, full methods or small refinements belonging to methods that
deal with a different concern.

Table 1 partially shows how this mapping could be created in case of framework “F”, which
was discussed earlier. From this mapping we can identify the variabilities, implementation units
and descriptions that indicate the pieces of code that implement each feature. The column

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 32

named “Index” is used to identify the classes that contribute to the implementation of more than
one variability, for instance, the classes ClassB and ClassX. In case of feature S1, its variabili-
ties are v1, v6 and v9; the classes that implement these variabilities are ClassX, ClassB, ClassJ,
ClassI and other classes that are not being shown; the methods methodX1(), methodsX2() and
methodB2() belong to these classes and they cooperate with the implementation of the varia-
bilities v1, v6 and v9. One should realize that there are classes that totally collaborate with the
implementation of certain variabilities, such as the classes ClassJ and ClassI that implement v9.

Table 1. Mapping between subdomains and source code

Feature Variability Index Implementation unit Indicative for piece of code

Core v4 1 ClassA (implements v4) Full Class
 2 ClassB (implements v4) attibuteB1, attributeB2 and metthodB1()

3 ClassY (implements v4) Full Class

S1 v1 4 ClassX (implements v1
and v6)

methodX1() and methodX2()

 v6 2 ClassB (implements v1, v6
and v9)

methodB2()

v9 5 ClassJ (implements v9) Full Class
 6 ClassI(implements v9) Full Class

S2 v5 7 ClassH (implements v5
and v7)

Full Class

 v2 4 ClassX (implements v2) attributeX1, attributeX2, methodX3(),
methodX4() and methodX5()

v7 2 ClassB (implements v5, v2
and v7)

attributeB3 and methodB3()

4 Case Study: GRENJ

GRENJ [9] was developed based on pattern language called GRN [5] and it covers Business
Resource Management domain. Applications commonly developed with its support involve
rental, trade and maintenance of business resources. A resource may be something like cars,
CDs, hotel bookings, books, electronic equipment etc. In that way, we consider as subdomains:
Rental, Trade and Maintenance. GRENJ contains 18.5 KLOC divided into three packages, 71
implementation units (classes/interfaces) and 1117 methods.

In order to make sure that the subdomains have been properly identified, we consider a set of
applications that had evolved many times. Furthermore, based on the documentation we created
an artifact to describe the available variabilities in the GRENJ. From this artifact and the appli-
cations, we applied the algorithm discussed in Section 3. Thus, the variabilities that were being
used in applications were separated into four groups: Core, Rental, Trade and Maintenance.
The variabilities associated with Core group can be applied to all subdomains, while the other
variabilities are specific to them. Table 2 partially shows this separation of variabilities for
GRENJ. It is important to highlight that this separation is a result of the use of algorithm al-
ready presented.

Table 2. Separation of variabilities into specific groups

Core Rental Trade Maintenance
Resource Fine Rate Sale Task

Transaction Itemized Associated Sale Purchase Part
Destination Party Reservation Delivery Quotation

After the analysis of developed applications with its support, documentation, pattern language,
usage history and source-code, we decided to create a feature model [19] to represent GRENJ

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 33

Core

MaintenanceTrade

excludes

Rental

Core

MaintenanceTrade

Core

MaintenanceTrade + Rental

a) b) c)

subdomains and for that we first figured out that the feature model would contain only three
features, with the separation of two subdomains, as illustrated in part (a) of Figure 4. So, appli-
cations of Rental subdomain could evolve and use the variabilities of Trade and vice-versa. In
this case, Rental and Trade could stay together, but separated from Maintenance. This separa-
tion was performed because applications of Rental subdomain will not use the variabilities of
Maintenance subdomain. Nevertheless, the applications of Trade subdomain could evolve
adding Maintenance, since the relationship is mutually exclusive, it would not be possible.
Therefore, according to part (b) of Figure 4, the relationship among features became “or”, but it
does not address the case, because Rental and Maintenance can be together. In relation to it, we
created a constraint [1] “Rental excludes Maintenance” and keeping the relationship “or”, as
presented in part (c) of Figure 4. This last feature diagram represents organization of GRENJ
subdomains.

Fig. 4. Feature Model for subdomains of GRENJ

Consequently, applications belonging to Trade subdomain, for instance, might use a framework
that contains only features of this subdomain and discard the remaining that belong to Mainte-
nance subdomain, the same holds true for the opposite. Furthermore, the separation of Trade
and Rental subdomains in order to make them also alternative may be justified by the need to
develop applications that will use only variabilities of one of these subdomains. If the motiva-
tion is to obtain an FPL with fine-grained features, the feature diagram obtained in this activity
that has only the subdomains separation may be refined. From the analysis of common and
specific variabilities of subdomains and their usage history in the applications, we are able to
decide which ones may be new features. Figure 5 shows the fine-grained features for an FPL
from GRENJ. Due to space limitations we separate the feature model in the indicated parts:
“A”, “B”, “C”, “D” and “E”. Note that there are more possibilities of choice that involve com-
mon features to the subdomains and the specific subdomain features. The two feature models
depicted in the part (c) of Figure 4 and Figure 5 represent two possible versions of FPLs from
GRENJ which we call GRENJ-FPL, considering the usage scenarios discussed earlier.

After creating a feature model to represent the FPL according to usage scenario 1 or 2, we may
identify the units that collaborate with the implementation of the features. This activity can be
supported by concern mining tools, as proposed by [18], in which it is possible to create a li-
brary containing keywords, imports and dependencies to investigate a specific concern. In
GRENJ’s case, we analyzed its source-code and documentation to identify the units which get
together to cooperate with features belonging to the feature models. Based on this investigation
we created a mapping for GRENJ following the idea discussed in Section 3.1. Table 3 partly
shows the mapping of the subdomain (feature) “Maintenance”, specifically the variability
“Task” with implementation units and some descriptions that indicate the pieces of code that
must be modularized in terms of features.

To modularize the identified units, several techniques can be employed, such as Aspect-
Oriented Programming [20], Collaboration-based design [2], Model-Driven Development [10]
etc. However, in order to provide a better separation of concerns and to obtain an FPL which is
flexible in architectural terms, proper techniques ought to be used. To modularize the GRENJ
we used Acceleo templates [16]. We have chosen Acceleo because it allows associating pieces
of code with their respective features and generating source-code of the members from models.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 34

BusinessTransactions

Core

QuoPurchase QuotationItem

RentFineRate Reservation AssociatedSale Task Part MaintQuotation

MaintenanceTrade

Purchase

DelSale DelPurchase QuoSale

Delivery Quotation

Simple Nested

Resource

Sale

Cash MoneyOrder EletronicTransfer CashOnDelivery Check CreditCard Invoice

TransactionItemized Actors

DestinationParty SourceParty Executor

FineRatePaymentStrategy InterestedRate

PaymentResourceQuantification

Measurable LotableSingle Instantiable

Legend: optional mandatory orabstract feature

QuoSale implies Sale ‘‘ ’’
QuoPurchase implies Purchase‘‘ ’’

DelSale implies Sale‘‘ ’’
DelPurchase implies Purchase‘‘ ’’

RentalFineRate implies FineRate‘‘ ’’
QuotationItem implies TransactionItemized‘‘ ’’

Rental excludes Maintenance ‘‘ ’’
AssociatedSale implies Sale‘‘ ’’

FineRate and Rental implies RentalFineRate‘‘ ’’

Table 3. Mapping between GRENJ subdomains and source code

Feature Variability Index Implementation unit Indicative for piece of code

Maintenance Task 3 BasicMaintenance BasicMaintenance(), setTasks(),
getTasksAsString(), getTasks(),

getTotalTasks(), getTotalTasksAsDouble(),
setTotalTasks(),saveTasks(),

getTotalTasksFromItemTransaction(),
getTasksAsList() and addTask()

 32 MaintenanceTask Full Class
54 ResourceMaintenance Full Class

5 Evaluation

GRENJ-FPL has two versions, one for each Usage Scenario: one with coarse-grained features
(Usage Scenario 1) and another with fine-grained features (Usage Scenario 2), they are repre-
sented by feature models, in the part (c) of Figure 4 and Figure 5, respectively. In order to
demonstrate the improvements in terms of use of these FPLs against previous MDF, we con-
ducted a comparative study using source-code quantitative metrics. Thus, we developed three
hypothetical applications with support of the FPLs and MDF. These applications have the fol-
lowing purposes: Rental of Vehicles (App.1), Sale of domestic equipment (App.2) and Mainte-
nance of Motorcycles (App.3).

First of all, the applications were developed with GRENJ support, and then with a derived
member from the FPL obtained concerning to Usage Scenario 1 (FPL1) and finally, with a
derived member from the FPL obtained according with Usage Scenario 2 (FPL2).

The members from FPL1 are as follow: “Core + Rental” (C+R) for App.1, “Core + Trade”
(C+T) for App.2 and “Core + Maintenance” (C+M) for App.3. The derived frameworks from

Fig. 5. Feature Model with fine-grained features for GRENJ

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 35

the FPL2 aim to address the applications requirements. For App.1, the features were: Core,
Resource, Simple, Nested, ResourceQuantification, Instantiable, BusinessTransactions, Rental,
TransactionItemized and DestinationParty. For App.2: Core, Resource, Simple, Nested, Re-
sourceQuantification, Single, BusinessTransactions, Trade, TransactionItemized, Destination-
Party, SourceParty, Executor, Payment, PaymentStrategy, Cash, MoneyOrder, EletronicTrans-
fer, CashOnDelivery, Check, CreditCard and Invoice. Finally, for App.3: Core, Resource,
Simple, Nested, ResourceQuantification, Single, BusinessTransactions, Maintenance, Task,
Part, MaintQuotation, DestinationParty, Executor, Payment, PaymentStrategy, Cash, Mon-
eyOrder, EletronicTransfer, CashOnDelivery, Check, CreditCard and Invoice.

The comparative study was conducted with support of some metrics, as follows: Total number
of lines of framework code (KLOC); Total number of abstract methods (hot spots); Quantity of
implemented methods essential to make functional application; Total of lines of implemented
methods; Quantity of parameters of abstract methods; Quantity of available features in the
framework; Quantity of used features in the application; Total of variabilities/features that can
be used in the future considering the application domain; and Quantity of variabilities/features
that will rarely be used.

Table 4 shows the obtained data in the three versions of the frameworks for each application.
The rows contain values for each metric and the columns contain values for each framework
used in the applications. The total number of lines of code framework was calculated using the
plug-in Eclipse Metrics and other metrics by direct observation of the code. In the rows related
to metrics “Total number of lines of framework code (KLOC)” and “Total number of abstract
methods (hot spots)”, with the use of FPLs members, there is a reduction of quantity of code
and available hot spots. For instance, considering GRENJ with 8.5 KLOC, FPL1 member used
for developing App.1 had 4.2 KLOC and FPL2 member for the same application had 3.4
KLOC, and so on. This means a reduction of 50,58% and 60% of framework code for App.1.

In relation to the available hot spots in GRENJ, the reduction was 77,22% for FPL1 member
and 89,88% for FPL2 member used for developing App.1. This also happens in the frameworks
used by the other applications. In the development of the three applications with GRENJ sup-
port was needed to concretize methods not necessarily related to the applications requirements.
For instance, 20 methods for App.1, 48 methods for App.2 and 55 methods for App.3 were
concretized, as described in the row related to metric “Quantity of implemented methods essen-
tial to make functional application”. From FPL2 members, it was possible to concretize only
methods related to applications requirements. It represents a reduction of 20% of methods in
App.1, 41,66% for App.2 and 47,27% for App.3. The obtained data with metrics “Total of
lines of implemented methods” and “Quantity of parameters of abstract methods” indicates that
the number of lines of implemented methods and their parameters continued steady in the use
of MDF and FPL1 members. However, when the applications were developed with FPL2
members, there was a significant reduction in number of code lines. For App.1, the reduction
was from 52 to 40 lines (it represents 23%), for App.2 was 187 to 132 (29,41%) and for App.3
was 89 to 63 lines (29,21%).

In order to compute the four last metrics, we admitted an equivalence level. As total quantity of
features, we adopted those provided by FPL2, i.e., 43 features. So, for FPL1 members, we
considered the including features in: Core, Rental, Trade and Maintenance. For MDF, we con-
sidered it providing 43 variabilities. For example, the derived member of FPL1 used by App.2
provides 35 features included in only two: Core and Trade. There are 24 features in Core and 9
in Trade, resulting in 35 features instead of 33, because Core and Trade are not abstract fea-
tures. For App.2, the values related to the metric “Quantity of available features in the frame-
work” contain C=25 and T=10, whereas the derived member of FPL2 for App.2 provides only
21 features based on the requirements of this application. This analysis is also performed for
App.1 and App.3.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 36

Table 4. Collected data in the evaluation

M
D

F
(G

R
E

N
J)

FP
L

1
m

em
be

r

FP
L

2
m

em
be

r

M
D

F
(G

R
E

N
J)

FP
L

1
m

em
be

r

FP
L

2
m

em
be

r

M
D

F
(G

R
E

N
J)

FP
L

1
m

em
be

r

FP
L

2
m

em
be

r

Metric Rental of Vehicles - App.1
Sale of domestic

equipment - App. 2
Maintenance of

Motorcycles - App. 3
Total number of lines of

framework code
(KLOC)

8.5 4.2 3.4 8.5 5.6 4.1 8.5 3.5 2.9

Total number of abstract
methods (hot spots) 158 36 16 158 56 28 158 62 29

Quantity of implemented
methods essential to

make functional applica-
tion

20 20 16 48 48 28 55 55 29

Total of lines of imple-
mented methods 52 52 40 187 187 132 89 89 63

Quantity of parameters
of abstract methods 12 12 8 19 19 16 18 18 14

Quantity of available
features in the frame-

work
43

C+R

10 43

C+T

21 43

C+M

22 C=25
R=4
29

C=25
T=10

35

C=25
M=4

29

Quantity of used features
in the application 43/10 29/10 10/10 43/21 35/21 21/21 43/22 29/22 22/22

Total of variabili-
ties/features that can be
used in the future con-
sidering the application

domain

18
C=16
R=2
18

0 14
C=5
T=9
14

0 7
C=7
M=0

7
0

Quantity of variabili-
ties/features that will

rarely be used
15 0 0 8 0 0 14 0 0

In order to obtain the values for metric “Quantity of used features in the application”, it was
necessary to take into account the obtained values in the previous metric. To illustrate, although
MDF provides 43 variabilities, App.1 required only 10 (43/10). The FPL1 member provided 29
(29/10) and FPL2 member only 10 (10/10) features and so on.

The values for metric “Total of variabilities/features that can be used in the future considering
the application domain” show the remaining features which are likely to be used in the future.
As to emphasize, for computing we consider that evolution of the three applications do not
imply an addiction of another subdomain. For instance, an application of Trade subdomain
evolves aggregating Rental. Therefore, by using GRENJ for developing App.1, 18 features that
were not used, may be used in the future. For FPL1 member used in this application, 18 fea-
tures can be decomposed as follows: 16 belong to Core and only 2 to Rental (C=16, R=2).
Regarding the FPL2 members, there are not remaining features for three applications.

The last line of Table 4 contains values related to metric “Quantity of variabilities/features that
will rarely be used”, i.e., the quantity of features provided by the framework that rarely will be
used in the applications, even if they evolve. In case of use of MDF to develop App.1, 15 of 43
features rarely will be used and even so they continue in the application. It represents 34,88%

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 37

of unnecessary features. The quantity of unnecessary features for App.2 was 18,6% and App.3
was 32,55%. Note that those unnecessary features do not exist in FPL1 and FPL2 members.

In general, the instantiation of a smaller framework and targeted to the domain of an applica-
tion, may be more productive and lower error-prone, when compared with the use of the com-
plete version of the same framework. The higher the quantity of available variabilities, mainly
if they have not been implemented with proper management, there are more chances for AE to
make mistakes, for instance, to select erroneously variabilities and to concretize methods incor-
rectly.

6 RELATED WORK

The approach proposed by [12] aims at modularizing crosscutting concerns found in frame-
works. This research is based on the concept of Horizontal Decomposition (HD) and the HD
principles were evaluated based on the results of a restructured persistence framework. The
main concern of this study was to improve the framework modularity, in order to reduce the
effort when performing maintenance. Most of the literature that deal with framework modulari-
zation make use of the existing crosscutting concerns as main criterion. That means the objec-
tive is to have a new framework version where the crosscutting concerns are well modularized.
Our goal, however, differs in the fact that for us what guide the modularization are the subdo-
mains. So, we could use, for example, HD as our strategy. Having this pointed out, this work is
complementary to ours.

Another approach was proposed by [21]. The researchers present a methodology for restructur-
ing of frameworks in cascade. They consider that a framework can be specified by a set of
models and, through these, a set of modularizations may be sequentially applied. The modulari-
zation starts in the feature model, then in the use case model and, after that, in the architectural
model up to the time it achieves the source code. In order to preserve the framework’s behavior
after each change, trace maps are used among the models. As a result of this process, decision
records regarding the transformations are analyzed to document and to completely restructure
the framework, with improvements in terms of modularity, which reflect more effective levels
of maintenance. Considering this methodology, the trace maps can assist the organized modu-
larization of MDFs in FPLs, as it enables the traceability among the features, including compo-
sition rules and their relationships with the framework code. This work presents just a strategy,
but does not concern about a modularization criteria. So, it is possible to use their modulariza-
tion strategy to restructure MDFs into FPLs.

7 CONCLUSIONS

This paper defines the FPL concept, a strategy to identify subdomains of an MDF as an essen-
tial step to modularize it into FPL and also shows a comparative study demonstrating the bene-
fits of developing applications with support of FPL members, instead of using the complex
structure of an MDF with all available variabilities covering several subdomains.

An FPL provides a flexible architecture that enables the creation of members that have a subset
of the features. These members are frameworks directed to the domain of these applications, so
they need to be instantiated in order to obtain concrete applications. When modularizing MDFs
in FPLs, one can achieve greater flexibility in the composition of features, which provide
smaller frameworks and also better productivity levels by reducing error-prone in the instantia-
tion process of these frameworks. The flexibility of composing features of an FPL enables to
address the specific demands of applications. It is worth mentioning that these frameworks can
be formed by a subset of features that must be used now or in the future by a certain set of

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 38

applications that have a domain in common, i.e. one can avoid unnecessary variabilities that
support different domains of these applications.

Considering the concepts presented, one of the future perspectives of the work is to explore the
possibility of developing an SPL from an FPL that was obtained from an application frame-
work, including the classes that instantiate it and, then, compose and test the applications de-
rived from this line. Moreover, it is possible to explore the fact of an FPL to be maintained and
used under the concepts of Software Ecosystems (SECOS) [13], since an FPL may consist of
several developers on a distributed and open-source platform, that is, a collaborative network.
Therefore, the creation of FPLs that are flexible and targeted to the business areas is also possi-
ble. An FPL may become available so that other developers can add features or improve the
existing ones. Also, many application frameworks restricted as proprietary software, and con-
sequently hard to find, can be provided and improved with the use of SECOS.

A limitation of the FPL concept is that there is not a comprehensive tool that supports the pro-
cess of framework modularization. With a complete tool, it would also be possible to investi-
gate the impact of new features in the architecture of an FPL, by analyzing the interferences
they can cause in the existing ones. It is also believed that the creation of a plugin to visualize
the mapping between features and classes can help FEs modularize frameworks, by showing
which classes implement a particular feature and which are affected in case a feature is select-
ed. Apart from this plugin, another tool to enable the creation of FPL members at various levels
can be developed. At first, the FPL Engineer would create members with the features of a given
domain and, then, if necessary, they would select a more specific set of features from this sub-
domain.

Acknowledgements

The authors would like to thank Capes, CNPq (Process 560241/2010-0) and Fapesp (Process
2011/04064-8) for financial support.

References

1. Barreiros, J., Moreira, A.: Soft Constraints in Feature Models. In: 6th International Con-
ference on Software Engineering Advances (ICSEA), pp. 136-141, Barcelona (2011)

2. Batory, D., Cardone, R., Smaragdakis, Y.: Object Oriented Frameworks and Product
Lines. In: 1st Software Product Lines Conference (SPLC1), pp. 227-247, Colorado (2000)

3. Batory, D., Lopez-Herrejon R. E., Martin J.P.: Generating Product-Lines of Product-
Families. In: 17th IEEE International Conference on Automated Software Engineering,
IEEE Press, pp. 81–92, Edinburgh, UK (2002)

4. Batory, D. Shepherd, C. T.: Product Lines of Product Lines. Technical report, University
of Texas-Department of Computer Science (2011)

5. Braga, R. T. V., Germano, F. S. R., Masiero, P. C.: A Pattern Language for Business Re-
source Management. In: 6th Pattern Language of Programs Conference, pp. 1–33, Monti-
cello, Illinois (1999)

6. Camargo, V. V., Masiero P. C.: An approach to design crosscutting framework families.
In: Proceedings of the 2008 AOSD workshop on Aspects, components, and patterns for in-
frastructure software, pp. 1-6, Brussels, Belgium (2008)

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 39

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley Professional, 3rd edition (2001)

8. Czarnecki, K., S. Helsen, U. Eisenecker.: Staged configuration through specialization and
multilevel configuration of feature models. In: Software Process: Improvement and Prac-
tice, pp. 143 – 169 (2005)

9. Durelli, V. H. S., Durelli, R. S., Braga, R. T. V., Borges, S. S.: A Domain Specific Lan-
guage for Lessening the Effort Needed to Instantiate Applications Using GRENJ Frame-
work. In: Information Systems Brazilian Symposium, pp. 31-40, Pará, Brazil (2010)

10. Gottardi, T., Durelli, R., López, O., Camargo, V. V.: Model-based reuse for crosscutting
frameworks: assessing reuse and maintenance effort. In: Journal of Software Engineering
Research and Development, v. 1, pp. 4-34 (2013)

11. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design patterns: Elements of reusable ob-
ject-oriented software. Addison Wesley (1995)

12. Godil, I., Jacobsen, H.: Horizontal decomposition of Prevayler. In: Conference of the Cen-
tre for Advanced Studies on Collaborative Research, pp. 83-100. Richmond Hill, Canada
(2005)

13. Jansen, S., Cusumano, M.: Defining Software Ecosystems: A Survey of Software Plat-
forms and Business Network Governance. In: 4th Workshop on Software Ecosystem, pp.
41-58, Boston, MA, USA (2012)

14. JBoss Community – Hibernate, http://www.hibernate.org

15. Johnson, R. E.: Reusing Object-Oriented Design. Technical Report - University of Illinois,
(1991)

16. Obeo - Model Driven Company, Inc. – Acceleo http://www.eclipse.org/acceleo

17. Oliveira, A.L., Ferrari, F.C., Penteado, R.A.D., Camargo, V. V.: Investigating Framework
Product Lines. In: ACM Symposium on Applied Computing, 27th ACM Symposium on
Applied Computing, pp. 1177-1182, Trento, Italy (2012)

18. Santibáñez, D. S. M., Durelli, R. S.. Marinho B.. Camargo, V.V.: CCKDM - A Concern
Mining Tool for Assisting in the Architecture-Driven Modernization Process. In: CBSoft -
The Tools Session, Brasilia, Brazil (2013)

19. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E, Peterson, A. S.: Feature Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report, (1990)

20. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irving, J.:
Aspect Oriented Programming. In: Proceedings of the European Conference on Object-
Oriented Programming (ECOOP). Springer-Verlag, Finland (1997)

21. Xu L., Butler G.: Cascaded Refactoring for Framework Development and Evolution. In:
Proceedings of the Australian Software Engineering Conference (ASWEC’06), pp. 319-
330. Sydney, Australia (2006)

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 40

