
Using Task Contexts to Improve Software Process
Execution

Ivens da S. Portugal1 and Toacy C. de Oliveira1

1 PESC/COPPE – Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Abstract. During a software process execution, software engineers often deal
with a sheer number of artifacts to be consulted while only a small set of them
is needed to perform a given activity. Thus, the search for suitable artifacts to
perform an activity, usually referred to as an activity context, may be tiring,
time consuming, error-prone and may demand the software engineer additional
effort. This behavior leads to a lower productivity. A Degree of Interest (DOI)
function is a mechanism that scores elements according to a particular rule
specified earlier. It can be used to evaluate artifact's interest value in relation to
each of the software process' activities. Mylyn is an Eclipse plugin that imple-
ments a DOI function. It is aimed at providing support for programmers in the
search of Java classes during coding task's executions. However, Mylyn's DOI
function does not take into consideration particularities of other phases of the
execution of a software process such as use case or test case description. In ad-
dition to this lack of support, Mylyn's DOI function does not use the underlying
software process to infer task contexts. For that reason, this work expands this
DOI function so (i) software engineers may be assisted in the search for arti-
facts no matter which activity is being executed and (ii) the software process is
considered in the calculation of a given artifact's interaction value. The final
implementation was named MylynSDP. A validation study was conducted to
assess the concepts described here.

Keywords. Software Development Process, Software Process Specification,
Software Process Execution, Degree of Interest (DOI) function, Task Context

1 Introduction

Software processes have been used to guide the development of software products
since the last century [7] [18]. The underlying assumption is that the use of a software
process during the development of a system reduces the chances of system failure and
increases the overall quality of the final system. Some studies point to the same direc-
tion [3] [1].

During the execution of a software process, software engineers involved in the de-
velopment of the system perform activities and manipulate artifacts. In most cases,
they have a sheer number of artifacts available to be manipulated whereas he only
needs a small subset of them. For instance, RUP from IBM [11] has more than a hun-

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 109

dred artifacts in its specification, but only a relatively small number of these artifacts
are needed to perform each of its activities. Due to this, a search for the suitable arti-
facts for each activity must be done. As the software engineer performs this search
over a great number of artifacts, it can be tiring, error-prone and time consuming.
Once the needed artifacts are at hand, the execution of the activity then starts.

The search problem arises again when changing activities. A change of an activity's
execution may be caused by either an interruption by a high-priority activity or by the
decision to finish that activity's execution later. In both cases, a new search for the
suitable artifacts will have to be performed again, which brings all of its negative
effects early mentioned into consideration again. The subset of the suitable artifacts
related to one activity's execution is often named the context of that activity. For that
reason, the problem of changing activities is referred to as the context change prob-
lem.

Both the search and the context change problems negatively affect the software en-
gineer’s productivity [16]. A solution for these problems is the utilization of a Degree
of Interest function. A DOI function is a mechanism that scores and ranks elements
based on a predefined rule. Software processes' artifacts may be given an interest
value based on their importance to the current activity's execution. Thus, whenever a
software engineer starts the execution of an activity, the most important artifacts are
highlighted for him, which drastically reduces time and effort spent on the context
search.

An implementation of a DOI function can be found on Mylyn [15]. Mylyn is a
plugin for Eclipse IDE, aimed at helping software developers finding Java classes and
methods suitable for the task being performed. Mylyn's DOI function associates an
interest value to each class of the Java project based on the programmer's interaction
with the classes. The interest value association is done in such a way that the more
manipulated a class is, the more interesting it is to the task execution.

Mylyn's DOI function effectively solves the search and the context change prob-
lems for the code implementation stage. However, it is focused for that specific stage
only, which makes it not suitable for other software process' stages. Moreover, the
definition of programmers' tasks is manually done without any aid that could support
or justify its creation.

Regarding this scenario, Mylyn's DOI function was extended in order to help soft-
ware engineers solve the search and context change problems in all phases of the
software process during its execution. In addition to it, the new DOI function consults
the software processes modeled to infer the importance of artifacts in relation to a
given activity and to aid the software engineer in the definition of the activities to be
performed. The new DOI function's implementation was named MylynSDP.

A validation study was conducted in order to assess the concepts described in this
paper. Participants executed a software process in a simulated environment and then
answered a technology acceptance questionnaire. The overall acceptance of
MylynSDP was positive. Details of the validation study are described at the end of this
work.

This paper is organized as follows. Section 2 describes some related works that
helped in the development of this paper. Section 3 presents and describes in detail
MylynSDP and its new DOI function. Section 4 is related to the validation study con-

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 110

ducted and its analysis. Section 5 concludes this paper with suggestions for future
work.

2 Related Work

One of the first attempts to manage the context of a task to by pointing out a subset of
suitable documents related to that task come from Placeless and Presto projects from
Xerox Palo Alto Research Center (PARC) [5]. According to them, conventional ap-
proaches emphasize the location of documents of a project when organizing them
rather than their usage. For that reason, project documents are stored in a hierarchical
structure of folders and subfolders and not stored according to what they relate to (e.g.
project, priority, level of expertise needed). Presto is a prototype system that allows
users to apply properties to documents and organize them according to these proper-
ties. Placeless was a project inside Xerox used to assess the concepts proposed. One
major drawback of Presto and Placeless projects is that a user must manually catego-
rize all of his files, which still requires an elevated amount of time and effort to be
spent.

Researchers from Oregon State University developed a software system to help
highly multitasking workers in the categorization and search of daily work documents.
The system was named TaskTracer [6]. TaskTracer divides work in discrete units
called tasks. When the user starts a task, TaskTracer records what is being done in
every task to build a task profile, which is very similar to a task context. If the user has
his work interrupted, he can restore his applications later and return to what he was
working with at the time of the interruption with low effort. Nonetheless, TaskTracer
is limited to Microsoft Office, Visual Studio and Internet Explorer applications, which
does not fully represent all the applications a software engineer deals during his work.

In Sweden, researchers from Umeå University created a system called UMEA,
which stands for User-Monitoring Environment for Activities [12]. UMEA uses the
concept of project spaces to split up the execution of tasks from each other. Each
project space is a separate work environment to help the user organize resources ac-
cording to his desired way. Moreover, UMEA monitors user activities to automatically
add new resources to a given project space. UMEA reduces the time and effort needed
to search suitable documents and automatically organizes them into context, or project
spaces, to aid the user on a context change. However, there is not a support for a pro-
cess to guide the execution of tasks. A process can help define which tasks should be
done and help the user even more.

Most of the work aimed at helping on the management of the documents and task
contexts do not consider a process as the underlying guide to the execution of the
tasks. Thus, a research on Process-Centered Software Engineering Environments
(PSEE) had to be performed. A PSEE is an environment that provides software engi-
neers several services such as process modeling, process execution, software engineer
team coordination, deadlines monitoring and creation of reports [8] [10]. Not all
PSEEs offer all possible services, but most of them help software engineers to manip-
ulate software process artifacts [15] [2].

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 111

One of the PSEE that should be pointed out is WebAPSEE [17]. Developed by re-
searchers of Federal University of Pará, Brazil, WebAPSEE is a PSEE aimed at
providing automation and flexibility of software processes at both modeling and exe-
cution times. This PSEE stores information about several projects, such as their activi-
ties and artifacts, as well as data about software engineers and their roles. A software
engineer can be allocated to work on a given task with some artifacts, and the associa-
tion can be edited at execution time. WebAPSEE has an artifact repository, which not
only stores the artifacts to be manipulated by software engineers but also works as a
version control system. However, the association between a software process activity
and artifacts is done manually even though most of the information needed to do this
automatically is accessible in the underlying software process.

2.1 Mylyn

Although Mylyn is not a PSEE, its contributions to documents categorization and
search are interesting. Mylyn [13] [14] was developed by researchers of University of
British Columbia, Canada, in the form of an Eclipse IDE plugin. Eclipse is one of the
most used IDEs for software development and, for that reason, Mylyn and its Degree
of Interest function, is aimed at helping programmers in their daily coding work.

Mylyn’s initial interface is comprised of five views: Mylyn Package Explorer,
Mylyn Problem List, Mylyn Outline, Mylyn Task List and the working area. Mylyn
Package Explorer stores Java Projects, packages and classes that will be manipulated
during the development of a system. Mylyn Problem List shows Java syntax error and
warnings to help programmers fix their codes. Mylyn Outline summarizes a Java doc-
ument by showing its classes, methods and variables in a concise way. Mylyn Task
List displays all the tasks alongside a button to start or finish the execution of each of
them. The working area is where Java classes will be created and edited. The look of
Mylyn’s interface is similar to the one presented in Figure 1.

The more the programmer manipulates Java classes, the more they become more
important to the task being executed, and thus, the more it should belong to that par-
ticular task context. Other Java classes, that are not constantly used are considered of
low interest and later are filtered out from the programmers view. For this to work
properly, Mylyn defined five types of interaction events that a programmer may per-
form when dealing with Java classes. Table 1 shows each of these interactions and
briefly explains them. Mylyn's DOI function scores Java classes based on the interac-
tions they receive. Table 1 also describes what points each of the interactions contrib-
ute to that Java class' interest value.

Table 1. Mylyn’s interaction events and their scores. Each interaction event contributes to an
artifact’s interest value with the score indicated on this table

Interaction Event Description Score
Selection Selection of artifacts with the mouse or the keyboard. 1 point
Edition Edition of the contents of artifacts. 0.7 point
Command Commands such as saving or compiling 1 point
Propagation Indirect interactions on elements (e.g. renaming a meth- 1 point

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 112

od name affects all classes that executes that method).
Prediction Capture of future interactions based on previous ones. 1 point

Mylyn's DOI function usage starts with the creation of the artifact. The programmer
uses the Eclipse's Java class creation wizard, specifies some parameters and finishes
the creation. At this point, a new Java class is created, without any interest value asso-
ciated. Once a class is created, the programmer can manipulate it, i.e. interact with it
either by selecting it, editing it, saving it or by any other way specified in Table 1. If a
selection is performed at that new Java class, that information is saved in a log file.
The interactions performed on other classes affect the final interest value of the clas-
ses that were not interacted. In this example, the programmer performed 10 selections
on other classes. All of these interaction events are saved to the log file as expected.
Whenever Mylyn's DOI needs to calculate one Java class' interest value, it consults the
log file and looks for the set of interaction events targeting that particular class. In this
example, there is only one interaction event: the selection one. Once Mylyn's DOI
function has gathered all interaction for one class, it can start calculating its interest
value. Mylyn's DOI function multiplies each interaction by its score and then subtracts
from it a decay value. The decay value is a small value that is subtracted from the
interest value for a class at each programmer's interaction with other classes. For that
reason, less manipulated class are eventually excluded from a task context. The de-
fault decay value is 0.017. Therefore, in this example, the class' interest value is 1 x 1
- (10 * 0.017) = 0.83.

The creation of a task is straightforward. The software engineer creates a task using
a Mylyn wizard either by browsing the menu or by clicking "new task" button on
Mylyn's Task view. Once the task is created, no initial context task in built. It will be
built, though, from the moment the software engineer starts interacting with the exist-
ing classes. The software engineer finishes the task creation by naming the new task.

Although Mylyn deals with software engineering field, it has two major drawbacks.
The first one is the lack of support for other phases of the software process. As Mylyn
is aimed at providing help for software development, other phases, such as use case
description or definition of test cases, do not benefit of Mylyn's features. The second
drawback relates to the disregard of the software process. It is said that Mylyn is not
process-based. When taking the software process into consideration, the task creation
can be guided and each task context can be initially inferred.

3 MylynSDP

3.1 Overview

MylynSDP is an Eclipse plugin whose objective is to help software engineers in the
search of software artifacts during a software process execution. The name MylynSDP
comes from the fact that it is an extension of Mylyn project intended to work for soft-
ware development processes. MylynSDP aids software engineers by scoring the im-

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 113

portance of each artifact based on (i) the software engineer's interaction with them and
(ii) their relationship with software process' activities, which is presented in the soft-
ware process specification. Once each artifact has its interest value set in relation to
each activity, MylynSDP's DOI function can group artifacts, thus creating a context
for each activity, and filter out low scored artifacts from the software engineer’s view.

Each unit of work in a software process is called an activity. In MylynSDP, each
software process' activity is transformed into a task. Thus, a task is nothing more than
an instance of an activity. This allows a software engineer to re-execute an activity
without losing the information of a previous execution. The same approach is used
between software process' artifacts and MylynSDP's artifacts, but both are called arti-
facts. From this point in this paper, this naming convention will be used.

Figure 1 shows the initial view of MylynSDP. It has three main views: the Artifact
view (Figure 1-A), the Task view (Figure 1-B) and the Working Area view (Figure 1-
C). The Artifact view, on the left, is named “Package Explorer” on Figure 1. It is the
place where all artifacts from one project are displayed to the software engineer. By
browsing it, the software engineer may select or open artifacts. If a task in currently in
execution, the Artifact view will only display artifacts that belong to that task context.
The Task view, or “Task List” on the right column of Figure 1, stores all tasks created
by the software engineer. By clicking in a small rounded button next to each task, the
software engineer is able to start and finish the execution of a task, as well as change
the task being executed to another. In the middle, there is the Working Area view,
where artifacts can be manipulated during the execution of a given task. It currently
displays the contents of an empty Glossary file.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 114

Fig. 1. MylynSDP’s initial view. Artifacts are displayed in the left and tasks are displayed on
the right. Once a task is selected, artifacts are filtered. The central area is the working area

In order to (i) associate each artifact to the suitable task, according to the software
process and (ii) to allow MylynSDP's DOI function to infer an initial context for each
task created, MylynSDP features a new type of interaction: the specification interac-
tion event. This interaction is automatically performed by MylnSDP's DOI function in
three situations. The first is during the creation of an artifact when a task is being
executed and that artifact, according to the software process, is supposed to belong to
that task context. The second situation is also at the creation of an artifact, but when
the new artifact does not belong to that task context, according to the software pro-
cess. In both situations, MylynSDP's DOI function performs a specification interaction
event and adds the new artifact to the current task context. The third situation is at the
creation of a task. When a task is created, MylynSDP's DOI function consults the
software process and checks what artifacts should initially belong to that task context.
Next, it scans all artifacts already created and automatically performs a specification
interaction on the suitable artifacts. Thus, each artifact interacted will have its interest
value increased. Moreover, at the creation of both an artifact and a task, the software
engineer uses a suitable wizard, which helps him to associate the new task with its
activity and the new artifact with the software process artifact that based its creation.

3.2 DOI function

DOI function is the mechanism that calculates interest values for all artifacts in rela-
tion to activities, which allows artifacts to be grouped into task contexts. These sets of
relevant artifacts then are displayed to the software engineer as the most important
ones, whereas other artifacts are hidden from his view.

An artifact’s interest value is calculated as shown in MylynSDP’s DOI function al-
gorithm in Figure 2. There are three main steps: the event registration, the addition
and the subtraction steps. First, each interaction event occurrence that aims a particu-
lar artifact is registered in a variable that has the name of the interaction. This step is
relatively simple and it was omitted from Figure 2 due to space limitation. Whenever
an artifact’s interest value is necessary, “getValue()” method, on line 1, is called. The
addition step is represented by “getEncodedValue()” method on line 8. MylynSDP’s
DOI function multiplies the number of each interaction event’s occurrence ever per-
formed to that artifact to its score (lines 10, 11 and 12). The result is then saved into
“value” variable. The “specificationBias” variable is a zero-or-one value that repre-
sents if that artifact belongs to the actual task context. If so, “value” variable is in-
creased by 5 points (line 14). The third and final step is related to the decay value,
which represents how much uninteresting an artifact is to the current task context. This
is a subtraction step. DOI function calculates the difference between (i) the ordinal
number associated with the interaction event that created the artifact and (ii) the ordi-
nal number related to the last interaction event. The result is then multiplied to its
score (lines 24, 25 or 27, 28). If the current task context’s numbers of occurrence of
interaction events are below a given initial threshold (line 22 and 23), the decay value

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 115

then returned. Otherwise, half of the decay value’s original value is returned. This is
done in order to better filter out unnecessary artifacts from the software engineer’s
view since the start of MylynSDP’s usage.

Fig. 2. MylynSDP’s DOI function code. During getEncodedValue() method’s execution, the
interest value of an artifact is calculated, taking into consideration whether the artifact is sup-
posed to be on that context or not. The getDecayValue() method calculates the decay value for
that artifact based on how many interaction events happened since the creation of the artifact.
After an initial threshold of interaction events, the decay value is reduced to the half of the
original one.

Here is an example of how an artifact is created and interacted with. For the sake of
simplicity, it is considered that a software process has been imported and a task has
already been created. At the beginning, the software engineer creates a brand new
artifact using a suitable wizard. That wizard will help him associate the new artifact to
a software process specification’s artifact. At the moment that the software engineer
finishes the creation of the artifact, MylynSDP’s DOI function (i) performs a specifi-
cation interaction event on the new artifact and (ii) it moves the artifact to the current
task context. As the execution of the software process continues, the software engineer
will eventually select the new artifact. In that case, that artifact will have been targeted

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 116

by two interaction events: 1 specification and 1 selection events. At that moment, its
interest value will be calculated by multiplying the number of occurrence of each
interaction event by its score. A specification event has a score of 5 and a selection
event has a score 1. Thus, that artifact’s interest score calculation is as follows: (1 x 5)
+ (1 x 1) = 6.

The decay value has not yet been calculated, though. It can be considered that 10
interaction events happened since the creation of that artifact. Number 10 is arbitrary
and chosen for example purposes. As explained, to calculate the decay value of an
artifact’s interest, MylynSDP’s DOI function multiplies the number of interaction
events since artifact’s creation to a decay constant, which is 0.4. Thus, the decay value
in that situation is 10 * 0.4 = 4. Final interest value is calculated by subtracting decay
value from partial interest value. Therefore, final interest value is 6 - 4 = 2.

The creation of a task starts with MylynSDP's Task Creation wizard accessed by
the menu or the "new task" button on MylynSDP's Tasks view. The software engineer
then names the task. After it, he must inform the software process activity on which
that task was based on. There is a list where he selects the type. Once a task type is
selected, it cannot be changed later. After the setting of the type of that task,
MylynSDP's DOI function consults the software process searching for the activity that
based the creation of the new task and then checks the context of that activity, i.e., the
types of artifacts that are supposed to be used in that activities execution. Thereafter,
MylynSDP's DOI function scans all software process' execution artifacts searching for
artifacts whose type matches that activities' context. At each artifact found, the DOI
function performs a specification interaction event in order to add that artifact to the
new task's context. After scanning all artifacts, the new task creation is finished and an
initial task context for the new task is set.

4 Validation Study

4.1 Overview

In order to assess the feasibility of MylynSDP in a software engineer’s work, a valida-
tion study has been conducted. It was decided to run the validation study under a sim-
ulated environment due to the complexity and the time needed to observe the execu-
tion of a software process and the usage of MylylnSDP, along with its DOI function,
in a real environment. However, the software process chosen to the simulation was a
real one, and the participants were experienced in the software process field. Details
of the execution of the validation study are described in the next paragraphs.

The validation study consisted of two major stages: the simulation and the ques-
tionnaire. The simulation stage started with a presentation with some instructions.
Participants were taught the concepts of MylynSDP and how to operate it. They also
learned about the nature of the software process and its naming conventions, types of
activities and artifacts. Once finished, participants simulated the execution of a soft-
ware process by executing five exercises. Table 2 shows the objective of each of the
exercises.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 117

The questionnaire stage, as the name implies, demands participants to answer a 12
items questionnaire. The questionnaire comes from Technology Acceptance Model
(TAM) [4], which analyses a given technology under two perspectives: usefulness and
ease of use. The questionnaire participants answered is comprised of 12 statements,
shown in Table 3, and 7 possible answers (I completely disagree, I partially disagree, I
slightly disagree, I do not agree, nor disagree, I slightly agree, I partially agree, I com-
pletely agree). At the end of the questionnaire, there was a free commentary area on
which participants were able to justify their answers, criticize the concepts or suggest
modifications.

Table 2. The 5 exercises of the validation study alongside with their objective. Each exercise
was designed to observe participants when dealing with a particular situation

Exercise Objective
Exercise 1 Observe participants when dealing with low DOI function’s filter-

ing due to the initial usage of MylynSDP
Exercise 2 Observe participants’ performance when dealing with advanced

filtering by the DOI function
Exercise 3 Observe participants’ reactions when an artifact is needed during

a task execution but it does not belong to that task context be-
cause of modeling error

Exercises 4 & 5 Observe how participants interact with tasks and artifacts during a
context change. During the execution of exercise 4, they were
interrupted with a high-priority exercise 5.

Table 3. Each of the twelve statements presented in the TAM questionnaire. Participants were
asked to answer them with one of the seven possible answers ranging from “I completely disa-
gree” to “I completely agree”

Number Statement
Statement #1 Using MylynSDP’s DOI function in my job would enable me to

accomplish tasks more quickly.
Statement #2 Using MylynSDP’s DOI function would improve my job perfor-

mance.
Statement #3 Using MylynSDP’s DOI function would increase my productivity.
Statement #4 Using MylynSDP’s DOI function would enhance my effectiveness

on the job.
Statement #5 Using MylynSDP’s DOI function would make it easier to do my

job.
Statement #6 I would find MylynSDP’s DOI function useful in my job.
Statement #7 Learning to operate MylynSDP’s DOI function would be easier for

me.
Statement #8 I would find it easy to get MylynSDP’s DOI function to do what I

want it to do.
Statement #9 My interaction with MylynSDP’s DOI function would be clear and

understandable.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 118

Statement #10 I would find MylynSDP’s DOI function to be flexible to interact
with.

Statement #11 It would be easy for me to become skillful at using MylynSDP’s
DOI function.

Statement #12 I would find MylynSDP’s DOI function easy to use.

Invitations to take part in the validation study were sent to 1 MSc and 6 PhD Soft-
ware Engineer students who are enrolled in the Software Engineer course at
PESC/COPPE in Federal University of Rio de Janeiro, Brazil. They all have dealt
with software processes during their academic or professional life.

The software process used in the validation study comes from SIGA-EPCT project.
This projects aims at managing academic information from public universities in Bra-
zil. Data collected and managed by SIGA-EPCT range from information about stu-
dents, professors and subjects to enrollments, universities and teaching rooms. The
software process dealt with the specification and creation of use cases, interfaces,
class diagrams, test cases and data base scripts. More than 250 artifacts were available
to use in the execution of 10 activities.

4.2 Analysis

Percentages of answers were represented in a 3D chart, which is shown in Figure 3.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 119

Fig. 3. The percentage of answers for each questionnaire’s statement. Statements are represent-
ed by the letter “S” followed by its number.

It can be seen that the overall acceptance of MylynSDP’s concepts is high as the “I
completely agree” answer’s occurrence was more than 50% for almost all of the
statements. The only exception was statement #5, which also features a high percent-
age of “I agree” answers. Although MylynSDP was highly accepted, some points
worth mentioning.

Statements #6 and #8 have received “I do not agree, nor disagree” answers. The
participant who evaluated statement #6 with that answer, justified his opinion with a
commentary at the end of the questionnaire which says that he does not work with
software development anymore, and thus he could not evaluate the application of
MylynSDP’s concepts in his own work. Another participant also evaluated statement
#8 with the same answer as statement #6. This participant did not consider MylynSDP
along with its DOI function to be easy to do what he wanted, or controllable. It should
be pointed out that this participant had problems with Mac commands such as scroll-
ing, minimizing and closing documents, which could slightly affect his performance.

Statements #1 and #9 have been evaluated with an “I slightly disagree” answer.
Statement #1’s agreement was high, which makes this low score an outlier. The partic-
ipant did not leave a comment to explain his answer. The same situation happened
with the participant who scored statement #9 with a low score. Although he did not
leave any commentary, a suggestion was made. He suggested that more ways to im-
prove the search of artifacts should be implemented, as for example, the use of key-
words.

4.3 Threats to Validity

Although it could be observed that, according to the validation study, software engi-
neers accept MylynSDP’s concepts, it should be pointed out that the study was con-
ducted with only 7 participants. This number is low for a complete study and this
represents a threat to the validity of the study. Moreover, it was the first time that
participants dealt with this software process. The training before the study was per-
formed to give a better explanation of the project and the software process. However,
it is known that no previous experience with the project may affect the performance of
the participants.

Several participants complained about the naming convention used for artifacts of
the project. They did not consider the name of the artifacts intuitive. There was noth-
ing to be done to mitigate this threat to validity because artifacts used in the software
process simulation were the same used by real workers during the real execution of the
process.

The simulation of the execution of the software process aided by MylynSDP and its
DOI function was performed on an iMac. Six out of seven participants were not famil-
iar with Mac operating system and its interfaces. Some of them had minor problems
with scrolling, minimizing, closing documents and double clicking. It is believed,

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 120

though, that these issues have not negatively affected the overall’s performance of the
participants.

5 Conclusion

In this paper, we have noted two major problems that negatively affect a software
programmer's productivity: the search for artifacts and the context change problem.
Both problems require the software engineer to spend more time and effort on the
search task than the task he was expected to be performing, thus reducing his produc-
tivity. The solution proposed was the utilization of a Degree of Interest (DOI) func-
tion. It scores elements based on a predefined rule and was able to score artifact's
interest in relation to the task being performed based on the software engineer's inter-
action with the artifacts.

A DOI function has been implemented in Mylyn, an Eclipse plugin aimed at help-
ing Java programmers to search Java classes better within a huge pool of classes,
packages and projects. Mylyn's DOI function was limited to the coding phase of a
software process and was not able to infer task contexts because it did not considered
the software process as one of the elements capable of helping the programmers.

Then, Mylyn's DOI function was extended in order to recognize the underlying
software process and to support software engineer's tasks throughout the whole execu-
tion of the software process. The final implementation was named MylynSDP. A vali-
dation study was conducted which showed a high overall acceptance of MylynSDP's
concepts among experienced software engineers.

However, two limitations or improvements may be highlighted. MylynSDP's log
file does not easily provide useful information about the stream of events happened
during the execution of a software process. Such information may be used to investi-
gate the way the software process execution tasks and artifacts are being used and it is
useful for insights about forms in which a software process execution can be im-
proved.

In addition to it, MylynSDP's DOI function aids the work of one software engineer
at a time. The development of a system, nevertheless, is generally a collaborative work
between groups of software engineers. Research in collaboration area for software
processes have been performed [9] and the support for collaboration could be profita-
ble when joined with MylynSDP's concepts.

References

1. Aalst, W.M.P.: Trends in Business Process Analysis: From Verification to Process Mining.
In: International Conference on Enterprise Information System. Vol. AIDSS. (2007) IS13–
IS22

2. Arbaoui, S., Derniame, J.C., Oquendo, F., Verjus, H.: A Comparative Review of Process-
Centered Software Engineering Envirnments. In: Annals of Software Engineering, Vol. 14.
(2002) 311–340

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 121

3. Barjis, J.: The Importance of Business Process Modeling in Software Systems Design. In:
Science of Computer Programming, Vol. 71. (2008) 73–87

4. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-
mation Technology. In: MIS Quarterly, Vol. 13. (1989) 319–340

5. Dourish, P., Edwards, W.K., LaMarca, A., Salisbury, M.: Using Properties for Uniform
Interaction in the Presto Document System. In: Proceedings of the 12th Annual ACM Sym-
posium on User Interface Software and Technology. (1999) 55–64

6. Dragunov, A.N., Dietterich, T.G., Johnsrude, K., Mclaughlin, M., Li, L., Herlocker, J.L.:
TaskTracer: A Desktop Environment to Support Multi-Tasking Knowledge Workers. In:
Conference on Intelligent User Interfaces. (2005) 75–82

7. Fuggetta, A.: Software Process: A Roadmap. In: Proceedings of the Conference of the Future
of Software Engineering. (2000) 25–34

8. Fuggetta, A., Ghezzi, C.: State of the Art and Open Issues in Process-Centered Software
Engineering Environments. In: Journal of Systems and Software, Vol. 26. (1994) 53–60

9. Grambow, G., Oberhauser, R., Reichert, M.: Enabling Automatic Process-aware Collabora-
tion Support in Software Engineering Projects. In: Proceedings of the 6th International Con-
ference on Software and Data Technologies, Vol. 303. (2013) 73-88

10. Gruhm, V.: Process-Centered Software Engineering Environments: A Brief History and
Future Challanges. In: Annals of Software Engineering Vol. 14. (2002) 363-382

11. IBM: IBM Rational Unified Process (RUP). (2013) retrieved from http://www-
01.ibm.com/software/awdtools/rup.

12. Kaptelinin V.: UMEA: Translating Interaction Histories into Projects Contexts. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. (2003) 353–
360

13. Kersten, M., Murphy, G.C.: Mylar: A Degree-of-Interest Model for IDEs. In: Proceedings
of the 4th International Conference on Aspect-Oriented Software Development. (2005) 159–
168

14. Kersten, M., Murphy, G.C.: Using Task Context to Improve Programmer Productivity. In:
Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. (2006) 1–11

15. Matinnejad, R., Ramsim, R.: An Analytical Review of Process-Centered Software Engi-
neering Environments. In: Proceedings of the 19th IEEE International Conference and
Workshops on Engineering of Computer Based Systems. (2012) 64–73

16. Murphy, G.: Attacking Information Overload in Software Development. In: Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric Computing. (2009) 4

17. Reis, C.A.L.: Uma Abordagem Flexível para Execução de Processos de Software Evoluti-
vos. Doctoral Thesis, Rio Grande do Sul Federal University

18. Scacchi, W.: Process Models in Software Engineering. In: Marciniak, J.J. (eds.): Encyclo-
pedia of Software Engineering. 2nd edn. John Wiley and Sons, Inc, New York (2002)

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 122

