
Managing requirements@run.time with a
linguistic decision making approach?

Romina Torres1,2 Hernan Astudillo2

1 Universidad Andres Bello, Chile,
romina.torres@unab.cl, http://facultades.unab.cl/ingenieria/

2 Universidad Técnica Federico Santa Maŕıa, Chile,
hernan@inf.utfsm.cl, http://www.inf.utfsm.cl

Abstract. In the seminal work about requirements, Zave and Jackson
established that if specification models hold the correctness criteria then,
they can be used instead of requirements to make decisions (e.g. select an
architectural configuration to implement requirements). Unfortunately,
during runtime for systems under changing environments, domain as-
sumptions may change and if they are not properly maintained (synchro-
nized) the correctness criteria may becomes not useful to detect when
the specification model is not anymore a valid representation of require-
ments. Thus, requirements may be violated but not properly detected. In
order to avoid specification models become obsolete during runtime, we
already proposed reify requirements into abstract specification models. In
this paper we extend the correctness criteria to requirements@run.time
and we propose specifically the linguistic decision making (LDM) models
to represent these abstract models. We present an illustrative example of
how our approach works. The main contribution of this approach is ob-
tained during runtime, when the false negative rate error on determining
when requirements are violated is reduced.

Keywords: correctness criteria, requirements@run.time, linguistic de-
cision making models

1 Introduction

Requirements (R) are the goals that drive the development, the adaptation and
the evolution of systems. They are typically comprised by a set of functional
requirements (FRs) constrained each one (or the system as a whole) by a set of
non-functional ones (NFR). FRs are also known as capabilities. They specify
the functions that a system must be able to perform (for instance, FR1: “dis-
play the heart rate of a patient connected to the monitor”). NFRs instead are
statements of how a system must behave; they are non-functional constraints
(NFCs) upon the systems’ behavior (for instance NFC1 over the FR1: “with

? This work is partially supported by projects VirtualMarket (Fondef CA12i10380),
UTFSM-DGIP 24.12.50, and CCTVal (Basal FB0821)

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 589

a proper response time to a change in the patient’s status”). NFRs are by na-
ture ambiguous (e.g. “... a proper response time to...”). Indeed, humans often
to use linguistic terms to assess qualitative aspects [DVV92]. They are typi-
cally expressed using natural language [MK95] (e.g. system’s reliability may be
classified: “Ideal”, “Defective”, “Faulty”, “Erroneous”, “Malfunctioning”, “De-
graded” and “Failed” [Par97]). Thus, in order to deal with the ambiguity of
R, software engineers reify them into precise and verifiable specification models
(S) by using a set of domain assumptions (D) built by the observation of the
domain. Using the D, software engineers may specify the NFC1 as “... must
respond to a change in the patient’s status within 2 seconds”. Where D may be
comprised of information like “the approximated average time of this kind of dis-
positive”, or “the needed response time to allow medical doctors attend effectively
their patients in case of emergency”, to name a few. Citing authors Zave and
Jackson: {“The primary role of domain knowledge is to bridge the gap between
requirements and specifications”} [ZJ97]. In their seminal work about require-
ments, Zave and Jackson established that a software engineer should be able to
prove that requirements R hold the following correctness criteria [ZJ97]:

S,D ` R (1)

if, and only if, S and D are satisfied and consistent. Thus, instead of using
the probably ambiguous R, software engineers may use safety S, which is a
precise representation of R (valid meanwhile D are valid and consistent with
S). Unfortunately, the correctness criteria of Zave and Jackson [ZJ97] presented
on equation 1 becomes invalid when design-time specification models are used
during runtime for those systems which are under non-stationary environments.
Mainly because through time, perceptual system may be degrade [Hal06]. To
humans, the concepts’ meanings (like “proper response time” or “ideal relia-
bility”) change, mainly because they are built over their perceptions [Zad99].
“Humans have a remarkable capability to perform a wide variety of physical and
mental tasks without any measurements and any computations”. They ussually
use rough perceptions [Zad01].

In order to mitigate the obsolescence of S, we have already proposed to divide
the requirements reification process into two stages: reify firstR into S∗ and then,
reify S∗ into precise ones each time they are needed to verify the requirements’
satisfaction [Tor13,TBA12]. In this work, we formalize S∗ as linguistic decision
making (LDM) models, we present a framework to allow decision makers to assess
models and we extend the correctness criteria to runtime in order to keep using
it as a continuous verification mechanism that S are still a valid representation of
R. The rest of the article is organized as follows. Section 2 describes the related
work. Section 3 introduces the LDM approach. Section 4 presents the reification
process and the assessment approach. Section 5 shows an illustrative example.
And finally, Section 6 concludes the paper and draws future work.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 590

2 Related Work

The main strategy of managing systems under changing environments has been
to bring the design-time models to runtime in order to continuously verify their
satisfaction by their current architectural configurations (Cs) [BBF09]. Due to
requirements and environment may change, authors like Baresi et al. [BG10]
and Epifani et al. [EGM+09] proposed that models should evolve as they do.
According to the correctness criteria [ZJ97] this should means that each time D
or R change, S should be updated in order to mitigate the probability of using
an obsolete S. Under changing environments, changing D are the rule not the
exception. If the environment changes (1) D should be updated in order to main-
tain themselves representative of the environment and, therefore (2) S should
be synchronized with D in order to maintain S consistent with the changing D.
Thus, if D are not synchronized with the changing environment, then adaptive
systems may be not detecting “silent” violations (or violations without symp-
toms) mainly because S becomes obsolete and inconsistent with the perceptions
of humans observing the environment represented by the D. We call “silent”
violations, those in which architectural configurations do not drop their quality
levels but other functionally-equivalent architectural configurations improve sig-
nificantly making perceptions about the meaning of their domain assumptions
shift.

On the one hand, all those proposals that move precise specification mod-
els to runtime [AP07,BCG+10,BG11] may be potentially missing requirements
violations because they use directly their design-time models (using precise num-
bers to specify constraints) to make decisions during runtime (when probably
they had already became obsolete due to the inherent competence nature of an
environment full of functionally-equivalent alternatives). According to Predrycz
et al. [PEP11] “In practice, exact values of parameters of models are not so com-
mon. Normally uncertainty and imprecision arise due to lack of knowledge and
incomplete information reflected in system structure, parameters, inputs, and
possible bounds”.

On the other hand, those proposals [CGK+11,FGT12,EGM+09] not using
precise numbers to specify non-functional constraints proposed to augment each
system with a component responsible for the continuous updating of the models’
parameters. They implemented it as a Bayesian estimator, who re-estimated pe-
riodically the values of the parameters using the data collected from the running
system. However, the main and common drawback of these works is that they
represented each model’s constraint as a probability distribution. But, accord-
ing to Zave and Jackson [ZJ97], requirements are humans’ statements (which
are more familiar to the human reasoning) on the desired phenomena in the
world; they are obtained using a consensus process which is based on percep-
tions. Non-functional constraints like “fast”, “not so fast”, “not so slow” and
“slow” are quite difficult to model as probability distribution when their mean-
ings are context-dependent; thus, their meanings depend on the context of the
persons observing the environment and specifying constraints. Thus, constraints’
meanings depend on several not deterministic and unmanageable factors. Thus,

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 591

rarely, models’ constraints, which are on this case non-functional requirements,
could have a probabilistic nature as Mart́ınez et al. identified in most real-world
problems [MDH+09], where information is not perfect. Even when the MOSES
framework proposed by Cardellini et al. [CCG+12], did not propose to use prob-
abilistic distribution, they did proposed to use the average statistic estimators,
which were recomputed periodically using a data-driven algorithm (making it
computationally expensive). However, from the point of view of how specifica-
tion models were represented, the MOSES framework had a poor representation
of the constraints (only two classes: under and over the average) which is not
enough to express the richness of non-functional constraints.

In [TBA12] we divided the reification process into two parts. The first one, in
which software engineers represent their requirements as abstract specification
models (S∗) and the second one, in which the abstract models are reified into S
(a concrete one).

Fig. 1. The reification process from requirements into precise specification models is
divided into two consequent phases. The first one occurs when model is built, the
second one each time requirements satisfaction needs to be assessed. Proposal originally
presented in [TBA12].

Figure 1 summarizes our proposal showing that at design time S∗ were built,
at deployment time S∗ is reified into S using the current D and a C is se-
lected and finally, periodically during runtime, S∗ is reified each time is needed
to re-evaluate the satisfaction of R by C in order to generate a replacement
when properly. Even when in [Tor13] we proposed that architects should specify
S∗ as linguistic decision making (LDM) models, we did not built them cor-
rectly as LDM models because we did not use a linguistic aggregator operator
to aggregate the different constraints and we did not use a linguistic decision
making approach. We just modeled non-functional properties as linguistic vari-
ables [Zad75], where their range of possible values were linguistic values instead

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 592

of numbers. We used a computing with words (CWW) machinery [Zad96] but
assessing separately the satisfaction of alternative to each constraint to finally
aggregate them using the weighted average (WA) operator. Different from our
proposal in [TA12] we use in this paper an expert driven instead of a data-driven
approach to determine the linguistic values’ meanings, extending in this man-
ner, our approach to those areas where data is not available but just humans
perceptions.

3 Linguistic decision making approach

Clearly, requirements and therefore specification models are multicriteria deci-
sion making models where techniques of multiattribute analysis of alternatives
in a fuzzy environment developed on the basis of fuzzy preference modeling are
needed. We narrow the scope in this paper to individual decision-making (even
when it can be applied to procedures of group decision-making) [PEP11]. It
is already accepted that these techniques can lead to different solutions (not
deterministic) due to the associated uncertainty.

To solve linguistic decision making problems, the resolution scheme of multi-
criteria decision making problems has been extended [HH00]. Classically, this
resolution scheme has only two phases: (i) an aggregation phase, and (ii) an ex-
ploitation phase. In the aggregation phase, experts aggregate their opinions and
in the exploitation phase, they rank the alternatives and typically choose one.
Linguistic decision resolution schemes [HH00] add two previous and additional
stages: (1) the choice of the linguistic term set and its semantics, and (2) the
choice of the aggregation operator of linguistic information. In the first stage,
experts model each criteria as a linguistic variable whose linguistic values may
be defined using for instance: the semantic model [DB88] or the symbolic model
[DVV92]. In the second stage, experts define the appropriate aggregation opera-
tor of linguistic information for aggregating and combining their opinions about
a constraint or aggregate several constraints opinions to get a global assessment
[HH00].

An initial proposal of resolution scheme of linguistic decision making prob-
lems using CWW [Bon80] had three stages: (1) an encoder that translated words
into fuzzy sets, (2) a CWW engine that infer the output as a fuzzy set, and (3)
a decoder that retranslated from fuzzy sets into linguistic results. Zadeh [Zad96]
formalized the three main stages presented in this initial proposal [Bon80] as:
(i) the translation, (ii) the granular computing, and (iii) the retranslation stage.
The translation subprocess is the explicitation of the propositions into the Gen-
eralized Constraint Language (GCL). The granular computing is the inference
subprocess, where constraints are propagated to obtain a constraint on a vari-
able of interest. It uses rules of inference in fuzzy logic [Zad96] to propagate the
rules governing the fuzzy constraint propagation process. In the last process, the
output of the inference subprocess is retranslated in order to obtain a terminal
dataset from which a proposition in natural language may be derived if needed.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 593

It is very important to notice that in the original conceptual structure of
CWW, the explanatory database (ED) is considered static, then specifically the
granules representing the linguistic values do not change over time, or probably
the change is so slow that can be manually updated by humans.

Yager [Yag95] also presented a resolution scheme to make decisions under
ignorance using linguistic values. The author considered that in many real prob-
lems, the information about the satisfaction associated to different alternatives
may be at best expressed in terms of a linguistic scale. The author also con-
siders the two basic stages of the resolution scheme (aggregation and exploita-
tion phase). Each alternative is evaluated in each criteria (if there is available
data) and then, depending upon the aggregation function selected by the human
making a decision (decision model), alternatives are evaluated and ranked. The
author does not address cases in which the meanings of linguistic values could
change through time.

Mendel [Men01] proposed the perceptual computer, an architecture for CWW,
where perceptions (“words”) activate the perceptual computer (Per-C). The Per-
C has an encoder and a decoder (similar to the translation and retranslation
subprocesses [Zad96]), which needs to transform perceptions into fuzzy sets and
numbers into perceptions. Later [Men07], the same author proposed that the
internal fuzzy logic system in the Per-C should return fuzzy sets instead of num-
bers, and only then, these fuzzy sets should be decoded back to perceptions
that humans can understand. The Per-C is based on the codebook [Men01], in
which every word (the vocabulary) is modeled as an interval type 2 fuzzy set.
But independent of the representation of each “word”, it is important to notice
that Mendel does not discuss either how this architecture addresses or mitigate
the change of perceptions that could affect the “meanings” of the words through
time (the codebook).

4 Proposal

In this Section we present our proposal to support systems on managing their
requirements@run.time in order to safety decide when the current architectural
configuration should be replaced because requirements are becoming violated.
Our proposal consists on to divide the reification process in order to software
engineers represent at design time requirements as LDM models (abstract spec-
ifications) and to assess during runtime the satisfaction of current architectural
configurations to requirements (by using a LDM approach) in order to deter-
mine when a replacement is needed. The advantage of using a LDM approach is
that obsolescence of S are independently mitigated from the changing D mainly
because the LDM approach includes a stage to update the linguistic values’
meanings before to assess the models (demanding experts regularly update D
to update these meanings). To complete this vision, we extend the current cor-
rectness criteria to runtime in order it can be used at any time t:

S∗(D(t)), D(t) ` R (2)

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 594

Fig. 2. Proposal to support adaptive systems on managing their require-
ments@run.time in order to safety decide when the current architectural configuration
should be replaced because requirements are becoming violated

where S∗(·) is an abstract specification model, whose reification depends on the
available domain assumptions at time t. Thus, the original correctness criteria
shown on equation 1 would be a particular case of the extended correctness
criteria that we shown on equation 2. In the following subsections we show the
stages of our proposal which are shown in Figure 2.

4.1 The choice of the linguistic term set with its semantics (setup
stage)

The initial stage of any linguistic resolution scheme is the choice of the linguistic
term set and its semantics. In the left side of the Figure 2, we show the Ex-
planatory Database, where the linguistic term set comprised of a set of words is
regularly (as the alternatives changes) maintained by humans experts.

Let LV ji be a linguistic variable representing the j-th non-functional prop-
erty G(j) of the functionally-equivalent set of alternatives capable to provide the
functionality i. Let {LV ji

1 , . . . , LV ji
P } be the P possible linguistic values of the

linguistic variable LV ji according to a selected metric.
Let ED = {LV ji

1 , ..., LV ji
p , ..., LV ji

P } the linguistic term set or “words” avail-

able in the ED (as Figure 2 shows). Each linguistic value LV ji
p is a fuzzy set

[Zad65] represented by a fuzzy number.
For instance, assume that for the linguistic variable response time of a set

of functionally-equivalent services i, the linguistic term set could be defined
as {LV response time i

1 : excellent, LV response time i
2 : very good, LV response time i

3 :

good, LV response time i
4 : fair, LV response time i

5 : poor}, where a triangular fuzzy

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 595

Fig. 3. An illustrative example showing the graphical representation of each “word” of
the variable response time using triangular fuzzy numbers.

number representation has been chosen as Figure 3 shows. We delimit this
work to an expert-driven approach [PEP11], where human experts perform a
perception-based process to set up the “words’ meanings” (membership func-
tions’ parameters) by observing the alternatives first (specifically their proper-
ties’ values) as the bottom left part of Figure 2 shows.

4.2 The choice of the aggregator operator of linguistic information
(setup stage)

To aggregate NFCs we allow the use of the AND and OR operators. When-
ever the AND operator is used to aggregate the NFCs, then the selected al-
ternative Ak must simultaneously satisfies all the constraints. On the other
hand, if the OR operator is preferred, then the selected alternative must sat-
isfy at least one constraint. We also allow the use of unary ordering-based
modifiers “at least” (L) and “at most” (M) to manage the minimum accept-
able level of satisfaction for the user about the non-functional property G(j)

(the non-functional constraint). Bodenhofer [Bod08] defined these modifiers as
follows. Let lp be the label of the linguistic value LV ji

p (p fixed), the fuzzy
sets “at least lp” and “at most lp”, abbreviated as L(lp) and M(lp), respec-
tively, are defined as L(lp)(x) = sup{LV ji

p (y) such that y ∈ X and y � x and

M(lp)(x) = sup{LV ji
p (y) such that y ∈ X and x � y} where � is a crisp order-

ing on X .

Regarding the operators to aggregate opinions from different decision mak-
ers regarding one constraint, we allow the use of linguistic aggregation opera-
tor based on linear ordering: the linguistic max operator (LM1) and the lin-
guistic min operator (LM2) defined as LM1(a1, a2, . . . , an) = maxj{ aj} and
LM2(a1, a2, . . . , an) = minj{ aj} respectively. To deal with an intermediate
situation, Yager [Yager88] proposed the ordered weighted averaging (OWA) op-

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 596

erator defined as follows

φ(A) = φ(A1, ..., An) =
n∑

i=1

wiÃi (3)

which is a mapping φ : Rn → R, where the vector of weights is W = [w1,, wn]
with 0 ≤ wi ≤ 1 and

∑n
i=1 wi = 1. Moreover the set {Ã1, ..., Ãn} is a prioritized

permutation of the collection {A1, ..., An}, indicating that the element Ai is
the i-th greatest element in the set {A1, ..., An}, i.e., Ãi ≥ Ãj for i ≥ j. It is
important to notice that by properly adjusting the weights we can manage the
degree of LM1 and LM2 operators.

4.3 The definition of the LDM models (design time)

As right upper side of Figure 2 shows, decision makers (clients) using the labels
of the linguistic term set to encode their requirements by encoding their non-
functional requirements as non-functional constraints. These constraints were
initially defined in natural language

{Proposition in NL}+
They consist of an aggregation of the constraints written in terms of words
extracted from the ED.

fagg(x1, .., xn) where xj ∈ XG(j) and fagg := {Proposition using words}+
(4)

The expression {Proposition using words}+ can be constructed with a context-
free grammar to generate the linguistic expression. The elements of the context-
free grammar GH = (Vn, VT , I, P) are the following:

VN = {〈primary term〉, 〈composite term〉,
〈unary relation〉, 〈conjunction〉, 〈disjunction〉}

VT = {LV ji
1 , ..., LV ji

p , ..., LV ji
P ,L,M, AND,OR,OWA,NOT}

I ∈ VN

The production rules are defined with the Backus-Naur form over the ED
(see [RM12]). The brackets symbolize optionality while the symbol “|” stands
for alternative elements. The production rules P are the following:

I ::= 〈primary term〉|〈composite term〉
〈composite term〉 ::= 〈unary relation〉〈primary term〉|

〈primary term〉〈binary relation〉〈primary term〉|
〈primary term〉〈binary relation〉〈composite term〉

〈primary term〉 ::= 〈word〉|〈unary relation〉〈primary term〉
〈word〉 ::= LV ji

1 |...|LV ji
p |...|LV

ji
P

〈unary relation〉 ::= L|M|NOT
〈binary relation〉 ::= AND|OR|OWA

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 597

4.4 Assessing specification models expressed as LDMs (at
deployment or during runtime

As we can see in the right bottom part of Figure 2, the alternative selection deci-
sion is part of the aggregation and exploitation phases. In the classical resolution
scheme, during the aggregation phase, all the assessment values of the different
alternatives are collected from the evaluators. Then, during the exploitation
phase, the alternative Ã1 is selected. Algorithm 1 shows how our framework
selects a proper alternative to satisfy the LDM .

Algorithm 1 The tLDM framework recommending an alternative during de-
ployment time

Require: Set of alternatives to be assessed A1, ..., Am. The performance measurements
(xi

1, ..., x
i
n) for each alternative Ai with respect to all the attributes G(1), .., G(n).

Ensure: The alternative Ã1 with the highest satisfaction degree (SCORE) is selected.

1: From the ED the membership functions of the relevant LV
(j)
p , j = 1..n, p = 1..P

are obtained (those which are used in the LDM)
2: for each alternatives Ai do
3: Evaluate SCOREAi = fagg(xi

1, ..., x
i
n) using the relevant membership functions.

4: end for
5: Rank the alternatives A1, ..., Am according to the score SCOREAi to obtain the

permuted preference set Ã1 � Ã2 � � Ãm .
6: Recommend the alternative Ã1

In general, the aggregation function fagg (that Algorithm 1 references) must
satisfy the following properties: (i) if a > b then fagg(w, a) ≥ fagg(w, b); (ii)
fagg(w, a) is monotone in w; (iii) fagg(0, a) = ID, where ID is the identity ele-
ment; and (iv) fagg(1, a) = a (see [HH00] for further details of these properties).

Afterwards, once the alternative was recommended, it is stored with its
LDM , as Figure 2 shows {S∗, Ã1} (where Ã1 = C). The aim of storing the
duple is to periodically monitor during runtime that the selected alternative still
satisfies the LDM , and if not, a new alternative should be recommended. An
alternative may cease to satisfy a model basically by two causes:

– the alternative drops its quality of service or,
– other functionally-equivalent alternatives have improved enough to make

experts observing them to change of perception about the meaning of each
word (they become more exigent)

5 Illustrative example

“Golden age” is an internet-of-things application that monitors different aspects
of their subscribers using sensors (e.g. heart rate, GPS, to name a few) in order to
minimize the time between their patients start suffering an episode and that their

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 598

families are notified or/and the “golden age” ambulance assists them. Our client
requires that the application “Golden age” calls automatically to the patient’s
relatives using a highly available and fast telephony service This call will use a
pre-recorded notification asking confirmation or rejection by pressing a telephone
number button. Depending on how severe is the emergency, “Golden age” may
notify all relatives at once and assigns immediately the ambulance or it may
notify relatives one by one until one confirms that he/she can assist the patient.

The service market has approximately 1300 services of 59 different func-
tional categories. They have been crawled from programmableweb3, an open
web catalog of APIs where only SOAP services have been considered. We con-
sider two quality attributes represented by the following metrics: response time
and availability. Both metrics have been initially certified, whose values were
observed by the experts to set up initially the parameters of the membership
functions of each linguistic value of the ED. Let A be the set of 27 from 1300
alternatives capable to provide {Telephony}, which is comprised on this example
by

A = {Alianza,CallfireV oiceBroadcast, . . . , V oxbone}.

Let G = {G(1) = response time,G(2) = availability} be the two attributes
under consideration. “Golden age”’s software engineers have agreed to use five
linguistic values (P = 5) for each linguistic variable. For the response time the
linguistic values are {very fast, fast,medium, slow, very slow}, meanwhile for
the availability the linguistic labels are {poor, fair, good, very good, excellent}.
Software engineers also agree upon the constraints that “the selected alternative
should have at least a very fast response time and at least an excellent availabil-
ity”, in other words:

LDM = L(LV response time telephony) AND L(LV availability telephony
excellent)

The fuzzy numbers at setup time are: µresponse time
very fast (a = (0, 1), b = (700, 1), c =

(970, 0)), µavailability
excellent (a = (91, 0), b = (94, 1), c = (100, 1)).

At deployment time, the Adaptive framework obtains the ranked set of al-
ternatives and recommends to its client the one with highest rank: {Ã1 =
{CallfireV oiceBroadcast = 1.0} � Ã2 = {CallfireHostedCallCenter = 0.5} �
Ã3 = {AngelOutBound = 0.5} � Ã4 = {AcrossCommunications = 0.5} �
Ã5 = {PushBug = 0.5} � Ã6 = {TelenorClicktoCall = 0.5} � Ã7 =
{DIDWW = 0.5} � . . . } Assuming that “Golden age” accepts to use the
CallfireV oiceBroadcast service, then the pair {LDM ,Ã1} is stored in order to
monitor violation symptoms. The alternative Ã1 = {CallfireV oiceBroadcast =
1.0} has a response time of 661 milliseconds and an availability of 96%.

After ten iterations, the experts that are observing the world have changing
their perceptions about the word “very fast” response time of the functional
category Telephony. The linguistic value “very fast” of the response time un-
der observation has drifted with a positive trend: µresponse time

very fast (a = (0, 1), b =
(540, 1), c = (601, 0)). In this example, reader must assume that those services

3 http://www.programmableweb.com

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 599

already selected have been “frozen”; thus, Ã1 = {CallfireV oiceBroadcast} still
has a response time of 661 milliseconds. Even that, because regularly experts
are observing the alternatives, they updated the linguistic values’ meanings and
therefore when models are assessed, they are against of the latest updated mean-
ings. Therefore, in this chase it is detected that the contract Ã1 has degraded
its satisfaction on at least a 50% and therefore a replacement is needed.

6 Conclusions

In this paper we have shown that by using a linguistic decision making approach
to manage requirements@run.time, we are capable to detect “silent” require-
ments violations caused by the changes on the environment. As future work, we
will prepare experiments with humans to validate empirically our results.

References

[AP07] Ardagna, D., Pernici, B. Adaptive service composition in flexible processes.
IEEE Transactions Software Engineering, 33(6):369–384, June 2007.

[BBF09] Blair, G., Bencomo, N., France, R. Models@run.time. Computer, 42:22–27,
2009.

[BCG+10] Baresi, L., Caporuscio, M., Ghezzi, C., Guinea, S. Model-driven man-
agement of services. In 8th IEEE European Conference on Web Services
(ECOWS), pages 147 –154, dec. 2010.

[BJP12] Bianculli, D., Jazayeri, M., Pezzè, M. Matinée with Carlo Ghezzi: From Pro-
gramming Languages to Software Engineering. CreateSpace, 2012.

[BG10] Baresi, L., Ghezzi, C. The disappearing boundary between development-time
and run-time. In Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pages 17–22, New York, NY, USA, 2010.
ACM.

[BG11] Baresi, L., Guinea, S. Self-supervising BPEL processes. IEEE Transactions
on Software Engineering, 37:247–263, 2011.

[Bod08] Bodenhofer, U. Ordering of fuzzy sets based on fuzzy orderings. part i: The
basic approach. Mathware & Soft Computing, (15):201–218, 2008.

[Bon80] Bonissone, P. A fuzzy sets based linguistic approach: Theory and applications.
In Proceedings of the 12th conference on Winter simulation, WSC ’80, pages
99–111, Piscataway, NJ, USA, 1980. IEEE Press.

[CCG+12] Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Lo Presti, F., Miran-
dola, R. MOSES: A framework for QoS driven runtime adaptation of service-
oriented systems. IEEE Transactions Software Engineering, 38(5):1138–1159,
2012.

[CGK+11] Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli,
G. Dynamic QoS management and optimization in service-based systems.
IEEE Transactions Software Engineering, 37(3):387–409, 2011.

[CGK+12] Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R. Self-adaptive
software needs quantitative verification at runtime. Communications on ACM,
55(9):69–77, September 2012.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 600

[DB88] Degani, R., Bortolan, G. The problem of linguistic approximation in clinical
decision making. International Journal of Approximate Reasoning 2 (2) (1988)
143 – 162.

[DVV92] Delgado, M., Verdegay, J., Vila, M. Linguistic decision-making models. In-
ternational Journal of Intelligent Systems, 7:479 –492, 1992.

[EGM+09] Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G. Model evolution
by run-time parameter adaptation. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 111–121, Washington,
DC, USA, 2009. IEEE Computer Society.

[FGT12] Filieri, A., Ghezzi, C.,Tamburrelli, G. A formal approach to adaptive soft-
ware: continuous assurance of non-functional requirements. Formal Aspects of
Computing, 24:163–186, 2012. 10.1007/s00165-011-0207-2.

[Hal06] Hall, D. Automatic parameter regulation of perceptual systems. Image and
Vision Computing, 24(8):870 – 881, 2006.

[HH00] Herrera, F., Herrera-Viedma, E. Linguistic decision analysis: steps for solv-
ing decision problems under linguistic information. Fuzzy Sets and Systems,
115(1):67–82, 2000.

[MK95] Mannion, M., Keepence, B. Smart requirements. SIGSOFT Software Engi-
neering Notes, 20(2):42–47, April 1995.

[Mar10] Mart́ınez, L. Computing with words in linguistic decision making: Analysis of
linguistic computing models. International Conference on Intelligent Systems
and Knowledge Engineering (ISKE), 5–8, 15-16 Nov. 2010.

[MDH+09] Martinez, L., Ruan, D., Herrera, F., Herrera-Viedma, E., and Wang, P.
Linguistic decision making: Tools and applications. Information Sciences,
179(14):2297 – 2298, 2009.

[Men01] Mendel, J. The perceptual computer: An architecture for computing with
words. In 2001 IEEE International Fuzzy Systems Conference, pages 35–38.
IEEE, 2001.

[Men07] Mendel, J. Computing with words and its relationships with fuzzistics. In-
formation Sciences, 177(4):988–1006, February 2007.

[PEP11] Pedrycz, W., Ekel, P., Parreiras, R.. Fuzzy Multicriteria Decision-Making:
Models, Methods and Applications. John Wiley and Sons, Ltd., 2011.

[Par97] Parhami, B. Defect, fault, error,..., or failure? Reliability, IEEE Transactions
on, 46(4):450–451, 1997.

[RM12] Rodriguez, R., Martinez, L., Herrera, F. Hesitant fuzzy linguistic term sets
for decision making. Transactions on Fuzzy Systems 20 (1) (2012) 109–119.

[TA12] , Torres, R., Astudillo,H. Market-aware requirements. Anais do WER12 -
Workshop em Engenharia de Requisitos, Buenos Aires, Argentina, April 2012.

[Tor13] Torres, R. Mitigating the obsolescence of specification models of service-based
systems. 35th International Conference on Software Engineering, ICSE 2013:
1462–1464, San Francisco, CA, USA, May 18–26, 2013.

[TBA12] Torres, R., Bencomo, N., Astudillo, H. Mitigating the obsolescence of quality
specifications models in service-based systems. Second IEEE International
Workshop on Model-Driven Requirements Engineering, MoDRE 2012: 68–76,
Chicago, IL, USA, September 24, 2012.

[Yager88] Yager, R. On ordered weighted averaging aggregation operators in multi-
criteria decision making. IEEE Transactions System Man Cybernetics, 18(1):
183–190, 1988.

[Yag95] Yager, R. An approach to ordinal decision making. International Journal of
Approximate Reasoning, 12(3–4):237 – 261, 1995.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 601

[Zad65] Zadeh, L. Fuzzy sets. Information and Control, 8(3):338–353, 1965.
[Zad75] Zadeh, L. The concept of a linguistic variable and its application to approxi-

mate reasoning - i. Information Sciences, 8(3):199–249, 1975.
[Zad96] Zadeh, L. Fuzzy logic = computing with words. IEEE Transactions on Fuzzy

Systems, 4(2):103–111, May 1996.
[Zad99] Zadeh, L. From computing with numbers to computing with words-from ma-

nipulation of measurements to manipulation of perceptions. IEEE Trans-
actions on Circuits and Systems I: Fundamental Theory and Applications,
46(1):105119, 1999

[Zad01] Zadeh, L. A new direction in AI: Toward a computational theory of percep-
tions. Artificial Intelligence Magazine, 22(1):73–84, 2001.

[ZJ97] Zave, P., Jackson, M. Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology, 6(1):1–30, January
1997.

Proceedings of the XVII Ibero-American Conference on Software Engineering (CIBSE2014)

April, 23-25, Pucón, Chile Universidad de La Frontera, Temuco, Chile. 602

